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Navier-Stokes Analysis of Turbomachinery Blade

External Heat Transfer

Abstract

The two-dimensional, compressible, thin-layer Navier-Stokes and energy equations
were solved numerically to obtain heat transfer rates on turbomachinary blades. The
Baldwin-Lomax algebraic model and the ¢—w Low Reynolds Number Two-Equation
model were used for modeling of turbulence. For the numerical solution of the govern-
ing equations a four-stage Runge-Kutta solver was employed. The turbulence model
equations were solved using an implicit scheme. Numerical solutions are presented
for two-dimensional flow within two vane cascades. The heat transfer results and the
pressure distributions were compared with published experimental data. The agree-
ment between the numerical calculations and the experimental values were found to
be generally favorable. The position of transition from laminar to turbulent flow was

also predicted accurately.



Nomenclature

ARC  Surface arc length

a Sonic speed

C Axial chord

1 Constant in the ¢ — w equations = 0.405D+40.045
2 Constant in the ¢ — w equations = 0.92
Cy Constant in the ¢ — w equations = 0.9
D Damping factor in the ¢ —w equations
e Total energy per unit volume

H Heat transfer coefficient

H, . Reference heat transfer coeflicient

J Jacobian of transformation

k Turbulent kinetic energy

M Mach number
p Pressure

Production of turbulence

Pr Prandtl number
q Variable in the ¢ — w equations =v/k
Q Vector of dependent variables

Re Reynolds number

S Surface distance

St Stanton number

t Time

T Temperature

Tu Turbulence intensity

U,V  Contravariant components of the velocity

u,v Cartesian components of the velocity



X

z,Y

Axial distance

Physical Cartesian coordinates

Greek Symbols

a Constant in the ¢ —w equations = 0.0065

~ Specific heat ratio

€ Turbulence dissipation rate
Transformed coordinate transverse to the body

b;; Kronecker delta

K Thermal conductivity of the fluid

] Viscosity

v Kinematic viscosity

0 Transformed time

w e[k

'3 Transformed coordinate along the body

p Density

o, Prandtl or Schmidt Number for “¢”

o Prandt] or Schmidt Number for “w”

Subscripts

0 Inlet total condition

2 Exit condition

e Free stream conditions

eff Effective value

inlet  Inlet condition

S Static condition

T Turbulent quantity

w Surface conditions (wall)



Introduction

Modern gas turbines operate at high temperature and pressure to achieve im-
proved efficiencies. The design of such engines for extended periods of operation
requires an extensive knowledge of heat transfer rates. Integral boundary layer meth-
ods represent the simplest methods which may be used to determine heat transfer
but, because of the many assumptions made in their development, have a limited
range of applications. Therefore, these methods are often employed in preliminary
design applications. Differential boundary layer methods using parabolic solvers such
as GENMIX [1] are more of a standard practice for calculation of heat transfer. A
popular computer code for this purpose, namely STANS [2], was developed over many
years along with a parallel experimental program on the fundamentals of convective
heat transfer. This code incorporates many empirically obtained tools to make the
modeling of such phenomena as laminar/turbulent transition and the effect of tur-
bulence possible. The differential- method has a wider range of application compared
to the integral method. The method, however, fails near stagnation and separation
points. It also requires the specification of starting profiles near the leading edge
and the prescription of the flow velocity or the pressure distribution at the edge
of the boundary layer. This boundary specification needs to be performed for the
turbulence model parameters if one opts to use a model which employs differential
equations (e.g. two- equation models, Reynolds stress models, etc.). Many sugges-
tions have been made regarding the form and the manner in which such boundary
conditions are to be specified [3-7]. In view of the fact that the solution is sensitive to
the starting profile and to the free stream boundary condition, an alternative method
is desirable.

In a blade cascade, the flow conditions are very complex and many complicating

phenomena are at work simultaneously. A list of the more important flow phenom-



ena and blade characteristics affecting the blade heat transfer would contain: laminar,
transitional and turbulent flows; stagnation flow; acceleration and deceleration; free
stream turbulence; separation; curvature; surface roughness; Mach number effects;
transpiration; shock boundary layer interaction; and flow unsteadiness. It is desir-
able that the method of analysis have the capability to account for the above effects.
The ideal approach would be to solve the unsteady Navier-Stokes equations. How-
ever, the large computer time and memory requirements make this approach as yet
impossible. The blade-to-blade solution of the Reynolds averaged Navier-Stokes equa-
tions along with a suitable model of turbulence is an alternative that can be utilized
as a design tool. Some authors have calculated friction and/or heat transfer using
time-marching methods originally devised for inviscid Euler calculations. Carter et
al. (8] and Marconi and Wilson [9] have discussed the contamination of the velocity
and temperature profiles in the boundary layer which comes about as a result of the
smoothing operation performed to prevent oscillations and odd-even decoupling. In
references [8-10] special care was taken to minimize this problem.

In the work, presented herein, the two-dimensional, compressible, Navier-Stokes
and energy equations were solved using a time-marching scheme to obtain heat trans-
fer rates on turbomachinery blades. For the turbulent closure problem, two models
were employed, namely, Baldwin-Lomax algebraic model and ¢ — w low Reynolds
number two-equation model. The formulation of the problem and the turbulence
models employed, are discussed next, numerical issues and results are presented sub-

sequently.

Formulation

As discussed in therintroduction, direct solution of the Navier-Stokes equations

is impractical because of the very small grid size requirement. To circumvent this



problem, the mass-averaged (FFavre) Navier-Stokes equations are used. The mass-
weighted averaging helps to simplify the formulation of the turbulent compressible
flow but it does not eliminate the need for closure assumptions. In this work, the
Baldwin-Lomax algebraic model [11] and the ¢ — w low Reynolds Number model of
Coakley [12] were employed.

Governing Equations

The mass-weighted time-averaged governing equations in the conservation law
form in body-fitted coordinates as given in [13] will be given. The general transfor-
mation is:

0=t £=¢(z,y); n=n(z,y) (1)

which is used to transform the physical domain (z,y) to the computational domain

(¢,m). The governing equations in the transformed coordinates are:
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The transformed viscous terms are:
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Constant values of Pr = 0.71 and Prz = 0.9 were used for all the calculations.

Sy = UTgy + UTzy + ( + ]l;_T)({yaEa2 + nyana2) -
rT

The temperature differences within the cascades are not large enough to warrant
the use of a variable Prandtl number. Comparing the results obtained using both a
variable and a constant value of Prr, Boyle [10] concluded that the differences in the
results were small. This is understandable if one realizes that the contribution of the
term pr/Prr, in the region very close to the wall is very small. This also happens to
be the region in which variable Prandtl number models show a large value for Prr .

The thin-layer approximation, as discussed by Baldwin and Lomax [11], was used

to simplify the coding.
Body-Fitted Grid Generation

The quality of the computational grid is vital to the success of the numerical
computations. The grid has to be fine enough in locations where large gradients are
present (such as near the walls and in the vicinity of the stagnation points). They
also need to be coarse where these gradients are not as severe (free stream, far wake,
far upstream) to make the computations more economical.

There are a number of different methods for generating such grids. Algebraic,
hyperbolic and elliptic methods are common ways of accomplishing the task. In this
work elliptic mesh generation is employed to construct a C-type grid. The advantage
~ of this method is that the grid so generated is smooth and free of discontinuities. A

code called GRAPE which was developed by R. Sorenson [14] is employed for this



purpose.

Baldwin-Lomax Zero-Equation Turbulence Model

This model [11] is a two-layer model that divides the boundary layer into an inner
layer where the viscous effects are dominant and an outer layer where the turbulence
effects are of more significance. This model is based on the well-documented Cebeci-
Smith [15] model. The inner region is modeled in nearly the same way as the Cebeci-
Smith model. It uses the magnitude of the vorticity in the inner region in contrast
to the Cebeci-Smith model which uses the shearing strain. The need to calculate the
boundary layer and the displacement thickness is eliminated by replacing the length
scale by one which is easily computed. The frege stream turbulence is not a variable in
this model, therefore the influence of the free ;stream turbulence on the heat transfer
rate cannot be modeled using this model. Recéntly Boyle [10] has made modifications

to this model to account for several effects not included in the original model. This

model can be easily programmed and is popular in the CFD community.

g-w Low Reynolds Number Turbulence Model

It is well known that the heat transfer on turbomachinery blades is affected by
the level of the free stream turbulence. The ¢ — w model of Coakley [12] was chosen
to help simulate the effects of free stream turbulence and model transition. The
constants which determine the high Reynolds number behavior of the model were
determined as a result of the direct transformation of the high Reynolds number

model proposed by Jones and Launder from % and eto ¢ = vk and w = €/k
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with the kinetic energy assumed constant in the diffusion terms. The low Reynolds
number part of the model was constructed by the choice of damping {unctions that
reasonably produced the skin friction and profiles of velocity and kinetic energy in
calculation of low-speed boundary layer and pipe flows. As described by Coakley, the
unusual choice of ¢ in place of k eliminates the need for additional terms to balance
molecular diffusion. The chosen turbulence model has superior numerical behavior
compared to the k — ¢ model. This can be understood if one considers the behavior
of those parameters close to a wall. Close to a wall k¥ and ¢ are both proportional to
y?, but q is proportional to y and w is constant making the present model less stiff.

The model equations cast in the conservation form are:

0Q _OE  OF _ 8R OT
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The source terms of the model are:
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in which
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where the term Rer = qy/v is the turbulence Reynolds number. In tensor notation,

D= up
is the divergence of the velocity field,
2
§ = (i +uji = g6 jurk)ui (8)

is the strain rate invariant, and
2
P = pTS - §ka

is the rate of production of turbulent kinetic energy.

The turbulent viscosity is defined as:
pk
HT = Cul?:d— (9)

The process of transition, as simulated by the low Reynolds number two-equation
models is described by Patankar and Schmidt [6]. Their description of the process
is as follows: The convection and diffusion of kinetic energy into the boundary layer
increases the “production” term in the modeled kinetic energy equation which in turn
causes a rapid increase in k& or ¢q and ur . This is how the transition process
is simulated. The process then slowly decays and stabilizes due to the low Reynolds
number functions and the influence of the boundary conditions. This they conclude,
limits the usefulness of such models to flows for which the free stream turbulence is
the cause of transition.

The method of solution adopted was an implicit scheme and is discussed in a later

section.

Boundary Conditions
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Chima [13] presents the details on the stable method of specification/calculation
of the boundary conditions for the solution of the mean-flow equations.

The boundary conditions on ¢ and w were set up in the following manner:

Inlet- At the inlet of the calculation domain the value of ¢ is specified using the

experimental conditions, namely:

q= \/E = \/1'5(Tuinlet Ul'nlet)2 (10)

The value of w is specified in the following manner: First a value for ¢ is estimated.
To accomplish this, an estimate for the dissipation length scale is required. This length
scale is usually not reported as a part of the experimental conditions. For cascade
conditions the dissipation length scale is assumed to be equai to a certain percent of
the pitch. For example Hah [16] assumed a dissipation length scale equivalent to 1.0%
of the pitch. This assumption was made in tpe course of the calculations performed
in this work. With the assumed length scale,.one now proceeds to make an estimate

of the rate of dissipation at the inlet.
e= kY20 and w= e/k (11)
Wall- The boundary conditions for the turbulence parameters on the wall are:
gq=0 and — = (12)

where 7 is in the direction normal to the wall.
Lxit- The exit boundary conditions were computed by assuming the second deriva-
tive of ¢ and w to be zero in the streamwise direction.

Periodic Boundary- The periodic boundary was treated as an interior point. It

should be noted that the boundary conditions were imposed explicitly.

Numerical Scheme
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The quasi-three-dimensional viscous code (RVCQ3D) developed by Chima [13]
is utilized to predict the mean flow. The code employs an explicit, finite-difference,
multi-stage, Runge-Kutta algorithm. The multi-stage Runge-Kutta scheme developed
by Jameson, Schmidt, and Turkel [17] is used to advance the flow equations in time
from an initial guess to a steady state. Local time stepping and residual smoothing
are used to help stabilize the scheme and accelerate convergence. The convective
terms are evaluated at every stage of the scheme. The diffusive and dissipative terms
are evaluated at the first and second stage of the scheme to improve stability and
convergence. The residual smoothing is also performed at all of the four stages of the
Runge-Kutta scheme. The Beam-Warming approximate factorization [18] implicit
scheme is used for the solution of the ¢ — w model equations. This results in a
two-by-two system of coupled equations. The equations are coupled through the
Jacobian of the source term matrix. This matrix was replaced by a simple diagonal

form suggested by Coakely [12], namely:

D =1 (13)
where |
A =2/ (€1 +€) (14)
and
/=Sl + ) (15)

Coakley reports that the above choice maintains the diagonal dominance of the
_implicit tridiagonal solver.
This resulted in decoupling of the model equations and thereby a reduction of the

computing time per iteration.

Artificial Dissipation
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As discussed previously, when using central differencing in the convection terms
1t is necessary to add artificial damping to prevent the occurrence of instability in the
solution algorithm.

It was noticed in the course of this work and it has been reported by others
including Marconi and Wilson [9] and Davis, Ni and Carter (8], that the artificial
dissipation has a detrimental effect on the prediction of heat transfer and wall shear
stress. It has to be reduced to zero in the region very close to the wall. This was
accomplished by multiplying the scaling coefficients of the artificial dissipation terms
by the factor, [MIN[(j/jecdge)?, 1], where j is the index in the 7 direction and jedqe
is an estimate of the index of the edge of the boundary layer. z is a positive real
number between 2 and 5. Admittedly the above method is ad hoc and needs to be

substituted with a better scheme.

Results and Discussion

The experimental configurations chosen for comparisons are two for which there
is extensive data available. These are: first stage stator from the large low-speed
experiments of Dring et al. [19] and stator vane from the experiments of Hylton et
al. (3], designated as the C3X airfoil.

Code validation was performed prior to the above calculations using theoretical
correlations available on flat plate [20].

The algebraic and the two-equation models required approximately 40 x 10~ and
85 x 10~ seconds per iteration per grid point respectively. The memory requirements
for all the cases were below 2.0 megawords. Computations were performed on the

NASA Lewis Cray-XMP.
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The heat transfer parameters were plotted as presented in the respective refer-

ences. They are defined as follows:

q/I
H= —"2% 16
Ty — To(intet) _ (16)

H
St = ———u 17
PrchpV;cf ( )

where H is the heat transfer coefficient and ¢”,, T\, and Tg(iniery are the wall heat
flux the wall temperature and inlet total temperature respectively. St, p..s, Cp
and V..; are the Stanton number, the reference density, heat capacity and reference

velocity. The wall heat flux is computed using

" or
9w = —Na—nlwau ‘ ' (18)

Large Low-Speed Cascade

In this section, the results obtained for the first-stage stator of the large low-
speed cascade of Dring et al. [19] will be discussed. The Reynolds numbers are
representative of the conditions in turbomachinery. However, the inlet Mach numbers
are consistently below 0.1 in all the experimental runs in [19]. The very low Mach
number and the constant wall heat flux boundary condition makes this test require
an inordinate number of iterations to converge. The final approach to convergence
was extremely slow. It should be noted that the flow pressure converges long before
the heat transfer quantities. The number of iterations required for convergence was
about 30,000 to 40,000 when the Baldwin-Lomax model was used. The runs using
the two-equation model were started from a converged solution using the algebraic
model and required an additional 12,000 iterations.

The stator geometry and a typical grid which was employed for the discretization

of the equations are presented in figure 1 . The Reynolds number based on the axial
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chord and exit velocity was approximately 250,000 corresponding to the design con-
dition of the cascade. The inlet total temperature and wall heat flux were prescribed
as per the experimental conditions. The spacing of the first point away from the wall
was chosen such that the value of y* was less than unity. Two levels of turbulence
were considered, namely, 0.5% and a grid-generated 9.8% turbulence level. Figure
2 shows the comparison between the calculated surface pressure variations and the
experimental measurements for the above Reynolds number.

Figures 3 and 4 show the experimental and the predicted heat transfer for the two
runs of large low-speed cascade considered in this work. Laminar flow calculations are
also included for comparison. The experimental results for the low turbulence level
of 0.5% reveal that the flow on the pressure surface is mainly laminar and that only
near the trailing edge does it appear to turn transitional. The flow on the suction
side, however,rdoes become fully turbulent. The transition to turbulent low on the
suction surface for this case, appears to havé been influenced by the change from a
favorable to an adverse pressure gradient. In the case of the grid-generated turbulence
of 9.8% , the pressure surface flow appears to be in a prolonged transition process.
The onset of transition on the suction surface is further upstream as compared to the
case of low free stream turbulence. As such it can be concluded that the transition
is induced by the free stream turbulence.

Figure 3 shows the results obtained for the low free stream turbulence. For the
Baldwin-Lomax model, two grid arrangements were considered, namely, a coarse
150 x 30 grid and a fine 200 x 50 grid. The Stanton number is based on the exit
velocity and density. The fit to the data is satisfactory for both grids. The position
of transition from laminar to turbulent flow on the suction side was specified for this
calculation using the experimental data. The result presented using the ¢—w model
was obtained on the fine grid. The position of transition on the suction surface was
not specified and was predicted. The heat transfer agrees well with the experimental

data. The pressure surface was predicted to be laminar and heat transfer agrees with
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experiments.

Figure 4 shows the results obtained for the high free stream turbulence. The
computation using the Baldwin-Lomax model was performed on the fine grid where
the locations of the onset of transition on the suction surface was specified as deduced
from the experimental results. The pressure surface boundary layer was assumed to
be fully turbulent. Therefore, the onset of transition was specified to be somewhat
downstream of the stagnation point. For the two-equation model, an even finer 250 x
50 grid was used. This was done because the flow remained laminar on the pressure
surface on a coarser grid. Further refinement of the grid was not performed because of
the large computational work required. As can be seen from figure 4, the suction side
transition to turbulent flow as predicted by the Baldwin-Lomax model is abrupt and
does not conform to the experimental results. This is because Baldwin-Lomax model
does not account for the process of transition. The heat transfer in the turbulent
regime is well predicted. The suction surface heat transfer is successfully predicted
using the two-equation model. The pressure surface heat transfer is underpredicted
for both models and may be due to the coarse grid in the streamwise direction. The
stagnation heat transfer for this case is augmented by the high level of {ree stream
turbulence. This cannot be predicted by the present algebraic model. There are
algebraic models however, that can account for such effects [10]. The two-equation
model correctly predicted the heat transfer near stagnation. This may be fortuitous
since it is known that eddy viscosity type models are generally not suitable for the
stagnation region. The main reason for the weakness of the two-equation turbulence
models in predicting the stagnation flow heat transfer is the use of the Boussinesq
hypothesis. This hypothesis works well for shear-dominated flows, but in the case
of stagnation flows where the production of turbulence is dominated by the normal

stresses, this approximation is inaccurate.
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Run PT(pa) TT(°K) Tw(°’K) M2 Re, x107° Tu%

149 4743 795 657 0.92 1.51 6.5
158 4707 808 592 0.91 1.47 8.3
109 6208 796 665 0.90 1.96 6.5
113 6248 781 600 0.89 2.02 8.3

Table 1: C3X Cascade Runs

C3X Vane of Hylton et al.

The next set of cases considered was the data of Hylton et al. [3] which were
';)btained with a cascade of vanes with the designation of C3X. The airfoil is rep-
resentative of the highly-loaded low-solidity airfoils currently employed. Four runs
were chosen such that the effect of the Reynolds number and the inlet free stream
turbulence could be studied. The conditions of these runs and their numerical des-
ignations are summarized in Table 1. In the table, TT and PT are the inlet total
temperature and pressure respectively and Tw is the wall temperature. The wall
to gas temperature ratio, Reynolds and Mach number numbers are representative of
engine operating conditions.

Figure 5 shows the cascade and a typical grid employed for the discretization.
Other pertinent physical dimensions can be found in reference [3]. The surface pres-
sure variation comparison for Run 149 is presented in figure 6. In that figure, the
abscissa is the distance from the leading edge, normalized by the axial chord. The
pressure side experiences a favorable pressure gradient along the surface, whiie on the
suction side the pressure gradient is favorable to approximately the mid-chord where
it becomes adverse.

Runs were made using the algebraic model for cases 149 and 109, with two grids
of 150 x 50 and 200 x 60 point densities. Figures 7 and 8 show results obtained

using both of the models. Laminar flow and two-equation model calculations are also
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included for comparison. In common with the results presented in (3], the actual
heat transfer coefficient is normalized by a reference heat transfer coeflicient Hg
equal to 1135 watts/M?/°K. The abscissa is the surface distance measured from the
stagnation point and is normalized by the suction or the pressure surface arc lengths.
The value of y* for these runs was consistently chosen to be of the order of 0.5. The
wall boundary condition was constant temperature. Typically, 4,000 iterations were
required to obtain converged heat transfer results for the algebraic model.

When using the algebraic model, the locations of the onsets of transition on the
the two surfaces were prescribed to best match those of the experiments. The heat
transfer is overpredicted when the algebraic model is used. It should he noted however
that in reference [3], the flow on the pressure surface is characterized as transitional
and not turbulent. This could explain the disagreement between the experimental
and the predicted results on the pressure surface.

The two-equation model was run on the fine grid. It was applied to all four cases.
The computations typically required an additional 8,000 iterations to converge. Com-
parisons with the experimental data are sho.wn in figures 9 and 10. The following
conclusions were drawn from the results of the two-equation model calculations: 1)
The onset of transition from laminar to turbulent flow is correctly predicted for all
four cases, however, the heat transfer is underpredicted prior to transition and over-
predicted at the end of the transition process; 2) the enhancement of the heat transfer
as a result of an increase in the free stream turbulence and wall to gas temperature
ratio has been successfully simulated; 3) there is very good agreement for the pressure
side for all the four cases; 4) there is an overestimation of the stagnation point heat
transfer, the reasons for which have already been explored; 5) the transition from

laminar to turbulent flow is not smooth.
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Concluding Remarks

Predictions were made of the heat transfer rates on turbine vanes using a Navier-
Stokes solver. This is a departure from the common practice of using boundary layer
methods to perform this task. The latter requires information on the free stream
velocity or pressure which are obtained from experiments or a separate computer
program that would solve the Euler equations to extract this information. Other in-
formation such as the distribution of the free stream turbulence and the length scale
are separately derived by solving the reduced forms of the appropriate equations. The
present methodrdoes away with that and has the added advantage that it can solve
separated flows as well as attached flows. The Baldwin-Lomax algebraic model and
Coakely’s two-equation model were used in an attempt to account for the turbulence
effects. Algebraic models are easy to implement computationally, and do not have the
added computational expense of solving the extra model equations and the accompa-
nying convergence difficulties. They are therefore good candidates for a first attempt
to estimate the heat transfer coefficients in the turbomachinery environment. The
influence of the free stream turbulence on transition from laminar to turbulent flow
and its enhancement of heat transfer on the turbomachinery blades is well-known. It
was shown that this influence can be accounted for, albeit at a higher cost in com-
puter time, by the use of the two-equation model. There is room for improvements
however, as the predictive capability of the model is not equally satisfactory for the
cases considered. A more comprehensive study is required to determine the causes of
the deficiencies.

Again, it should be stressed that more work is needed to improve the turbulence
models, but it is felt that the general approach pursued in this work shows promise for
future attempts at obtaining engineering estimates of the heat transfer characteristics

of turbomachinery blades.
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Figure 1: Large Low spced Cascade and a Typical Grid

Figure 2: Pressure Distribution on the Large Low Speed Vane, Re = 250, 000
Figure 3: Stanton No. on the Large Low Speed Vane, Re = 250,000 ,Tu = 0.5%
Figure 4: Stanton No. on the Large Low Speed Vane, Re = 250,000 ,Tu = 9.8%
Figure 5: C3X Vane Cascade and a Typical Grid

Figure 6: Pressure Distribution on the C3X Vane, Case 149

Figure 7: Heat Transfer Coefficient C3X Vane, Case 149

Figure 8: Heat Transfer Coefficient, C3X Vane, Case 109

Figure 9: Heat Transfer Coefficient, C3X vane, Cases 149 and 158

Figure 10: Heat Transfer Coefficient, C3X Vane, Cases 109 and 113
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